Computing lattice ideals of unions of monomial curves

نویسنده

  • María-Jesús Pisabarro
چکیده

In this paper we present a combinatorial study of binomial ideals of dimension 1 of k[X1, . . . , Xn], using monomial parametrizations of the irreducible affine curves defined by their associated primes. We find an algorithm that checks whether or not the ideal of a union of monomial curves is binomial and another one that calculates curves such that their associated ideal is a prescribed lattice ideal. © 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]

Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...

متن کامل

Bounding Multiplicity by Shifts in the Taylor Resolution

A weaker form of the multiplicity conjecture of Herzog, Huneke, and Srinivasan is proven for two classes of monomial ideals: quadratic monomial ideals and squarefree monomial ideals with sufficiently many variables relative to the Krull dimension. It is also shown that tensor products, as well as Stanley-Reisner ideals of certain unions, satisfy the multiplicity conjecture if all the components...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

Finite atomic lattices and resolutions of monomial ideals

In this paper we primarily study monomial ideals and their minimal free resolutions by studying their associated lcm-lattices. In particular, we formally define the notion of coordinatizing a finite atomic lattice P to produce a monomial ideal whose lcm-lattice is P , and we give a characterization of all such coordinatizations. We prove that all relations in the lattice L(n) of all finite atom...

متن کامل

The Monomial Ideal of a Finite Meet-semilattice

Squarefree monomial ideals arising from finite meet-semilattices and their free resolutions are studied. For the squarefree monomial ideals corresponding to poset ideals in a distributive lattice the Alexander dual is computed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2004